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OUTLINE / SUMMARY

Sources of forecast errors
— Initial condition — Observing system, DA
— Model / ensemble formation

How to assess forecast errors?

— Error statistics from single forecasts — Statistical approach

— Ensembles — Dynamical approach

— Statistically post-processed ensembles — Dynamical-statistical approach

Developmental Testbed Center (DTC) Ensemble Testbed

— End-to-end ensemble infrastructure for testing new techniques
— Linkage / leveraging with HMT ensemble work

GSD contributions to HMT
— Timely / accurate analysis
— Fine scale ensemble for flash flood forecasting
— Moisture flux forecast

FY11 plans

— Land surface modeling (Noah)
— Probabilistic flux forecasts
— Bayesian statistical post-processing



OVERVIEW
HMT objective

— Develop and test new techniques for hydrometeorological
forecasting and applications

« GSD/ESRL focus on meteorological forcing of hydrological processes

Source of weather forecasts
— Most based on Numerical Weather Prediction (NWP)

NWP metrics

— Improve quality, utility, and timeliness of NWP guidance

« Evaluate impact on hydrologic forecasts

— 0-6 hr flash flood guidance — coupled atmosphere — land surface — hydro
ensemble

Fate of successfully tested techniques

— Transition to NWP operations
» Consider Developmental Testbed Center (DTC) for transition work



NUMERICAL WEATHER PREDICTION (NWP) BASICS

COMPONENTS OF NWP
« Create initial condition reflecting state of the atmosphere, land, ocean
* Create numerical model of atmosphere, land, ocean

ANALYSIS OF ERRORS
« Errors present in both initial conditions and numerical models

* Coupled atmosphere / land / ocean dynamical system is chaotic
— Any error amplifies exponentially until nonlinearly saturated

— Error behavior is complex & depends on
* Nature of instabilities
* Nonlinear saturation

IMPACT ON USERS

» Analysis / forecast errors negatively impact users
— Impact is user specific (user cost / loss situation)

» Information on expected forecast errors needed for rational decision making
— Spatial/temporal/cross-variable error covariance needed for many real life applications
— How can we provide information on expected forecast errors?



WHAT INFORMATION USERS NEED

General characteristics of forecast users

— Each user affected in specific way by
« Various weather elements at
 Different points in time &

« Space

Requirements for optimal decision making for weather sensitive operation
— Probability distributions for single variables
* Lack of information on cross-correlations
— Covariances needed across
» Forecast variables, space, and time

Format of weather forecasts
— Joint probability distributions
» Provision of all joint distributions possibly needed by users is intractable

— Encapsulate best forecast info into calibrated ensemble members
» Possible weather scenarios

— 6-Dimensional Data-Cube (6DDC)
» 3 dimensions for space, 1 each for time, variable, and ensemble members

Provision of weather information

— Ensemble members for sophisticated users
» Other types of format derived from ensemble data

— All forecast information fully consistent with calibrated ensemble data



HOW CAN WE REDUCE & ESTIMATE
EXPECTED FORECAST ERRORS?

STATISTICAL APPROACH

« Statistically assess errors in past unperturbed forecasts (eg, GFS, RUC)
— Can correct for systematic errors in expected value
— Can create probabilistic forecast information — Eg, MOS PoP

« Limitation
— Case dependent variations in skill not captured
— Error covariance information practically not attainable

DYNAMICAL APPROACH - Ensemble forecasting

« Sample initial & model error space - Monte Carlo approach
— Leverage DTC Ensemble Testbed (DET) efforts

* Prepare multiple analyses / forecasts —
— Case dependent error estimates
— Error covariance estimates
« Limitation
— Ensemble formation imperfect — not all initial / model errors represented

DYNAMICAL-STATISTICAL APPROACH

« Statistically post-process ensemble forecasts
— Good of both worlds
— How can we do that?



A FORECASTER’ S TESTIMONIAL ON ENSEMBLES

1. All models appear to be sensitive to initial conditions and thus show run-to-run
differences...

2. We all know this and suffer from it when we focus on them.

3. But they all showed a signal for an historic event. Anomalous PW values... we
all knew it was a record maker. The exact locations varied.

4. And we saw high probabilities of huge QPF amounts within a few 10s to hundreds
of kilometers of where extreme rainfall was observed. The ensembles predicted the

correct general axis and correct general region of a huge event. Does it get any
better than this?

5. The details and exact locations required lots of short-term vigilance. A bit of chaos
and some true limits of predictability affected us all.

6. This all screams to STOP LOOKING AT AND CHASING single models for the
details and focus on the high probability outcomes and generalized areas. NCEP
needs to make a super ensemble which we can all view in AWIPS and plop into GFE
too! This is especially true of QPF and QPF threshold categories of significance.

Finally, a forecasters chant: May my mind grant the serenity to know that no model
is perfect and grant me the serenity to leverage the probabilities and the ability
to know where the high probability outcome is and not chase any single model
or model cycle.



AVIATION EXAMPLE

Recovery of a carrier from weather related disruptions

— Operational decisions depend on multitude of factors
« Based on United / Hemispheres March 2009 article, p. 11-12

Factors affecting operations
— Weather — multiple parameters
» Over large region / CONUS during coming few days
— Federal regulations / aircraft limitations
» Dispatchers / load planners
— Aircraft availability
« Scheduling / flight planning
— Maintenance
* Pre-location of spare parts & other assets where needed
— Reservations
* Rebooking of passengers
— Customer service
« Compensation of severely affected customers

How to design economically most viable operations?
— Given goals / requirements / metrics / constraints



SELECTION OF OPTIMAL USER PROCEDURES

Generate ensemble weather scenarios e, i =1, n
Assume weather is e, define optimal operation procedures o,
Assess cost/loss ¢; using o, over all weather scenarios €;

Select o, with minimum expected (mean) cost/loss ¢, over ey,...

e, as optimum operation
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4 ™
Major tasks for DTC Ensemble Testbed (DET)

° Develop and maintain DET infrastructure

® Support its use by community
e Establish NCEP operational system as benchmark
® Test and evaluate new communiry methods

® Transition successful methods to NCEP and other agencies

» Link up with ensemble work in other test-beds

)

Developmental Testbed Center




LEVERAGING HMT & DET ENSEMBLE WORK

 DET plans for 2010-12

— Major effort to create end-to-end ensemble
infrastructure

* For various applications

— Direct benefits for HMT
- Use DET “facilities”

« HMT plans for 2010-11

— Introduce initial ensemble perturbations in HMT
domain

— Direct benefit for DET infrastructure development
» Experience / algorithms used in DET NA ensemble setup



FY11 PLANNED GSD CONTRIBUTIONS TO HMT

HMT ensemble (Isidora Jankov)

— Add initial perturbations

— Run ensemble system in real time

Statistical post-processing of ensemble (Ed Tollerud)

— Develop comprehensive Bayesian method

» Use Pseudo-precipitation
» Leverage parallel THORPEX & DET development
« Use HMT 2009/10 ensemble as training sample

Products / verification (Ed Tollerud / Linda Wharton)
— Data / products from 3 km resolution ensemble

— Ensemble / probabilistic moisture flux forecasts & eval.
Land surface modeling (Steve Albers)

— Adapt Noah model

— Initialization of land surface ensemble

GPS observations (Seth Gutman)

— New sites (up to 20)

— Variational assimilation of raw observations
Operations (Ed Szoke)

— Daily forecast briefing

— Director of operations (2 wks)

IT arrangements (Woody Roberts)
— Upgrade facilities at 3 cites
— Deliver data / products as needed



QUESTIONS

Assess achievements

— LAPS fine scale analysis
« Best in latency
« High quality
— HMT ensemble
* Fine scale
* Focused on precipitation

— Probabilistic moisture flux forecasts

Plans for transitioning new techniques to operations
— Use in national (SREF) ensemble?

— Operational HMT-type ensemble?
— AWIPS-2 application in WR?

Linkage with OHD & CNRFC

— FII\QT enserr]gle coupled with Noah land surface and OHD
ro mod

— Whom to engage with?

Reduced funding in FY11
— Would like to maintain / strengthen momentum



OUTLINE / SUMMARY

Sources of forecast errors
— Initial condition — Observing system, DA
— Model / ensemble formation

How to assess forecast errors?

— Error statistics from single forecasts — Statistical approach

— Ensembles — Dynamical approach

— Statistically post-processed ensembles — Dynamical-statistical approach

Developmental Testbed Center (DTC) Ensemble Testbed

— End-to-end ensemble infrastructure for testing new techniques
— Linkage / leveraging with HMT ensemble work

GSD contributions to HMT
— Timely / accurate analysis
— Fine scale ensemble for flash flood forecasting
— Moisture flux forecast

FY11 plans

— Land surface modeling (Noah)
— Probabilistic flux forecasts
— Bayesian statistical post-processing



BACKGROUND



OUTLINE / SUMMARY

Sources of forecast errors
— Initial condition — Observing system, DA
— Model / ensemble formation

How to assess forecast errors?

— Error statistics from single forecasts — Statistical approach

— Ensembles — Dynamical approach

— Statistically post-processed ensembles — Dynamical-statistical approach

Statistical post-processing of ensembles
— Bias correction, merging, downscaling, derivation of variables

Ensemble database
— Summary statistics — Phase-1

— Full ensemble data — Phase-2
— All queries about weather can be answered

Examples
— Ensemble over West Coast of US (SF)
— Display / decision tools
— Probabilistic thunderstorm forecasts



USER REQUIREMENTS FOR QUALITY

« Statistical resolution (“predictive skill”)
— Seek highest possible skill in ensemble of forecasts

— Need to extract and fuse all predictive information

« Ensembles, high resolution unperturbed forecasts,
observations, etc

« Statistical reliability

— Need to make ensemble members statistically
iIndistinguishable from reality

« Correct systematic errors (first moment correction)
« Assess error statistics (higher moment corrections)
» Use climatology as background information



FORECAST QUALITY - REALITY

Useful forecast info to ~20 days w. 20-80 km res. NWP models

Imperfect models used

— Model specific drift (lead-time dependent systematic error)

* Need unconditional bias correction of each member on model grid
— Solution, eg: Bayesian Pre-Processor (BPP)

Imperfect ensemble formation

— Forecasts are correlated, have various levels of skill, and form
uncalibrated cfd (spread)

» Need to optimally fuse all predictive info into calibrated posterior cdf
— Solution, eg: Bayesian Processor of Ensembles (BPE)

Stat. post-processing works on distribution of variables

— Raw ensemble members inconsistent with posterior cdf

* Need to adjust ensemble members to be consistent with posterior cdf
— Solution, eg: Members “mapped” into posterior quantiles

NWP models don’ t resolve variables of interest to user

— Information missing on fine time/spatial scales, further vars.

* Need to relate NWP forecast info to user variables
— Solution, eg: Bayesian downscaling to fine resolution grid



STATISTICAL POST-PROCESSING

 Problem

— Relate coarse resolution biased forecast to user relevant fine resolution
information

- Tasks broken up to facilitate collaboration / transition to operations
— Bias correct coarse resolution ensemble grid wrt NWP analysis
« Cheap
- Sample of forecasts / hind-casts needed
— Merge various guidance
- Fuse all predictive info into “unified ensemble”
— Create observationally based fine resolution analysis
+ Estimate of truth
— Downscale bias-corrected ensemble forecast
* Relate coarse resolution NWP and fine resolution observationally based analyses
— Perfect prog approach - No need for hind-casts
— Derive additional variables — AlVs
- Based on bias corrected & downscaled ensemble

« Outcome
— Skillful and statistically reliable ensemble of AlV variables on fine grid



00hr GEFS Ensemble Mean & Bias Before/After Downscaling 10%

2m Temperature

NCEP Ensembla Mean Foracast ( contour, K }
Biag Estimation hgumst RTMA 2% ( shadad K")

las—Corr. Ens. Mean Fest. After Downesaled { contour, K )
Bms Es‘hmutlon Agulnst RTMA 2% 10%? shcdad K

BO CUI, GCWHMB /EMC /NCEP /NDAA

10m U Wind

NCEP Enasmble Mean Ferscast { contour, m/a )

Blus Estimation Agumst I'\'TMA 2% ( shudsd m/s

Blas—Corr. Ens. Mean Fest. After Douna?ulod ( contour m/s )

Blcs Eshmahon Agulnat RTIM %_10X%

shud , m/s

80 CUI, GCWMB /EMC /NCEP /NDaA




N
s

N
N

Continuous Ranked Probability Score (C)

CONTINUOUS RANKED PROBABILITY SCORE
RAW / BIAS CORR. & DOWNSCALED & HIRES MERGED / NAEFS

NAEFS NDGD Probabilistic 2m Temperature
Forecast Verification For 2007090100 — 2007093000

N
1

-
co
1

-

.

=]
1

—
n
1

-
N
1

1 o From Bias correction (NCEP, CMC)

-+

Dual-resolution (NCEP only)

Down-scaling (NCEP, CMC)
Combination of NCEP and CMC

1 2 3 4 5 B 7 8 9 10 1 12 13 14 15 16
Forecast Lead Time (Days)

High
resolution
control &
Canadian
ensemble
adds
significant
value
=>
8-day total
gain in skill

22



ENSEMBLE DATABASE

- Depository / access

— Create unified NOAA digital ensemble forecast database
« Summary statistics from ensemble
— E.g., 10/50/90 percentile forecasts - Pase 1
+ All ensemble members
— E.g., 20-100 members - Phase 2
— Provide easy access to internal / external users
« Seamless forecasts across lead time ranges
« Many applications beyond NEXTGEN

— Part of 4D-Cube
* Relationship with SAS?

- Interrogation / forecaster tools
— Modify summary statistics
— Back-propagate modified information into ensemble

— Derive any information from summary statistics / ensembles
- All queries about weather can be answered
— Joint probabilities, spatial/temporal aggregate variables, etc



Ensemble Prediction System Development for
Aviation and other Applications

Isidora JankoV’



BACKGROUND

* Objective
* Develop fine scale ensemble forecast system

* Application areas
 Aviation (SF airport)
* Winter precipitation (CA & OR coasts)
« Summer fire weather (CA)

» Potential user groups

 Auviation industry, transportation, emergency and
ecosystem management, etc



EXPERIMENTAL DESIGN 2009-2010

Nested domain:

 Quter/inner nest grid spacing 9 and 3 km, respectively.

* 6-h cycles, 120hr forecasts foe the outer nest and 12hr forecasts for the inner nest

* 9 members (listed in the following slide)

* Mixed models, physics & perturbed boundary conditions from NCEP Global Ensemble

* 2010-2011 season everything stays the same except initial condition perturbations?



QPF

Example of 24-h QPF
9-km resolution

9 members:

ARW-TOM-GEPO
ARW-FER-GEP1
ARW-SCH-GEP2
ARW-TOM-GEP3
NMM-FER-GEP4
ARW-FER-GEP5
ARW-SCH-GEP6
ARW-TOM-GEP7
NMM-FER-GEP8




HMT QPF and PQPF

24-hr PQPF
48-hr forecast starting at 12 UTC, 18 January 2010 .
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Reliability of 24-h PQPF

Reliability diagrams of 24-h
PQPF

9-km resolution

Dec 2009 - Apr 2010

Observed frequency vs
forecast probability
Overforecast of PQPF
Similar performance for
different lead times

Brier skill score (BSS):
Reference brier score is
Stage IV sample climatology
BSS is only skilful for 24-h
lead time at all thresholds
and for 0.01 inch/24-h
beyond 24-h lead time.
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West-East XCs of Cloud Liquid through the San Francisco Area for

Model runs initialized on 28 Sept. 2010 at 18UTC
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SELECTION OF OPTIMAL USER PROCEDURES

Generate ensemble weather scenarios e, i =1, n
Assume weather is e, define optimal operation procedures o,
Assess cost/loss ¢; using o, over all weather scenarios €;

Select o, with minimum expected (mean) cost/loss ¢, over ey,...

e, as optimum operation
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Cloud / Reflectivity / Precip Type (1km analysis)
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Analysis of Visibility for the period 18 UTC 28 Sept. 2010 to
O0UTC 29 Sept. 2010

NOAA/ESRL LAPS 3km o I G 40 50

Stc Visibility (miles) VT 2B—Sep—2010 2000 UTC



Personal Weather Advisor (concerr ioea)
Decision Support in Weather-Sensitive Situations

PaU|a MCC8$|II’] and Kirk Holub, NOAA Earth Systems Research Laboratory

GSD Initiative

«Exploratory web-based decision support tool

«Decision guidance based on individual requirements for a given activity, in
weather sensitive situations

-Risk assessment interface, including economic (cost-loss) module

-Risk tolerance affects Yes/No decision guidance by associating (calibrated)
forecast uncertainty and risk limits

.Results created on demand



v Earth System Research Laboratory
Personal Weather Advisor (PWA)

[ Home Thresholds Risks Preferences Contact

Decision Support in Weather Sensitive Situations

Yes/No Decision Guidance for a planned activity

Fri

Welcome to the Personal Weather Advisor (PWA). Click on the Thresholds
tab above to enter the range of weather parameters required for your

activity. Then, Save the information and click on Google Mapsm for a
location marker in the area you are interested in.

PWA gives you guidance on your activitiy based on the associated risk limit
you are willing to take. Click on the Risks tab above for help assessing the
risk you are willing to take for your activity.

This will query the forecast grids to find when your weather requirements will be met at the
nearest grid point over the next 5 days giving you a Yes or No answer.

This application generates products from a ensemble forecast data base. It is intended to
allow a user to define and produce a forecast for general planning purposes only. Customers
are urged to obtain the latest official forecast information prior to engaging in any weather
sensitive activity, and to monitor forecasts for updates during such activities.
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v Earth System Research Laboratory

Personal Weather Advisor (PWA)

{ Home W Thresholdsw Risks W( PreferencesW[ Contactj

— Set Critical Thresholds & Risk Factors

Temperature do not go below [$] 0.0 “C using risk limit 30 %
Wind Speed [ remain between %] 5.0 m/sand 20.0 m/s using risk limit 95 %

Precipitation| do not exceed 4] 1.0 mm using risk limit 10 %

( E] Set Display Thresholds

— Save & Restore
(Save'\ (_Restore defaults'\
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v Earth System Research Laboratory

Personal Weather Advisor (PWA)
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— Set Critical Thresholds & Risk Factors

Temperature| do not go below %! 0.0 °C using risk limit = 30 %

Wind Speed | remain between +) 5.0 m/sand 20.0 m/s using risk limit 95 %

, — 8
Precipitation| do not exceed 3| 1.0 mm using risk limit 10 % &) 5 E
LA 3

o 4

( E] Set Display Thresholds % 2
a OF

— Save & Restore E )

(Save'\ (_Restore defaults'\ ﬁ 4

I 1 |

Fri Sat Sun Mon Tue Wed Thu
0115 01186 0117 0118 0119 01/20 01/21

SREF 1/152010 MDT
Do mot go below 0.0 °C

em ———— eta nmm rsm
Show mean

(_Show all images on one page\

! WV T r
North Pacific \ - MO L
Ocean = v

OK'+ARIE TN,
2o - .4MS AL

UAraE oA North

Atlantic
FL
Gulf of Ocean

Mé\xi;co Mexico

Cuba

Guatemala




P\

CIRES

Creation of Real-Time Probabilistic Thunderstorm
Guidance Products from a Time-Lagged
Ensemble of High-Resolution Rapid Refresh

(HRRR) Forecasts

Curtis Alexander!2, Doug Koch?3,
Steve Weygandt?, Tanya Smirnoval-?,
Stan Benjamin?

Cooperative Institute for Research in Environmental Sciences (CIRES)

National Oceanic and Atmospheric Administration/Earth System Research
Laboratory/Global Systems Division (NOAA/ESRL/GSD)
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Probabilistic guidance Valid 01z 10 Apr
from HRRR time- -
lagged ensembles
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The HCPF

HRRR Convective Probabilistic Forecast (HCPF)
Identification of moist convection using model forecast fields:

« Stability — Surface lifted index < +2°C (neutral to unstable)
 Intensity — Model reflectivity > 30 dBZ or updraft > 1 m s
« Time — 2 hr search window centered on valid times

« Location — Stability and intensity criteria searched within 25
points (radius of ~78 km) of each point for each member

HCPF =  # grid points matching criteria over all members
total # grid points searched over all members




Model Time-lagged ensemble
Init
Tir?nle Example: 15z + 2, 4, 6 hour HCPF

18z
17z
16z
15z

| Model I
runs 13z+4| |13z+6 |13z+8
I used\

12z+5 12z+7 |12z+9
IH

11z+6 11z+8 | 11z+10

'

l4z
13z
12z
11z

11z 12z 13z 14z 15z 16z 17z 18z 19z 20z 21z 22z 23z
Forecast Valid Time (UTC)



Spatial filter

Calculate probability: E B E B =
Find fraction of points -
within box that exceed
the threshold

O
Example

O
Threshold > 30 dBZ

O
Probability = 7/ 21

= 33 % —

Reflectivity = — o
(dBZ) <20 20-30 30-40 40-50 50+



HCPF Example: 23 UTC 15 May 2009

10 hr forecast 08 hr forecast

HCPF 05/15/2009 15 UTC 08 hr fcst Valid 05/15/2009 23 UTC Convective Probabilistic Forecast (%)

HCPF 05/15/2009 13 UTC 10 hr fcst Valid 05/15/2009 23 UTC Convective Probabilistic Forecast (%)
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Convective probability
forecasts from HRRR
time-lagged ensemble
(show with deterministic fcst)

m | [ B Reflectivity (dBZ)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

i Probability (%)

15z + 6h HRRR and HCPF




Observed relative frequency (%)

HCPF probability verification

HCPFs for all of August 2009
comprising 6215 ensemble
Reliability diagram forecasts (all lead and valid times)

Forecast Probability vs Critical Success Index for 6215 ensembles

100 PN T ST TS R Y Y S S S T S R Y T T T T T

0.095 —

20-km verification
0.09 —|

4-km verification

0.085 —|
0.08 —
0.075 —
0.07 —
0.065 —
— 0.06 —
0.055 —

g 0.05 —

0.045 —

— 0.04 —
0.035 —

0.03 —

0.025 —

— 0.02 —
0.015 —

0.01 —

1T 11T 17T 1T 1T 1T 17T 17T 17T 17 17T 17T T T T

0.005 —

S B A I N I N O

0 005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 08 085 09 095 1

100 HCPE

Forecast probability (%) Shows comparable skill to the CCFP
Caveat: HCPF was on smaller domain than

CCFP (but is issued every hour unlike
CCFP)

Probabilities too hot in general
Sharpness lost above 60%



HCPF generation time

>

<€

Real-Time HCPF

http://ruc.noaa.gov/hcpf/hcpf.cqi

®o0o0 HRRR Convective Probability Forecast

(@D

ED' @ @ @ @ [} [ http://ruc.noaa.gov/hcpf/hcpf.cgi v 1=20F- Google Q)
s

v

| [ HRRR Convective Probability Forec..

U.S. Department of Commerce | National Oceanic & Atmospheric Administration | NOAA Research

Q‘y Earth System Research Laboratory
High Resolution Rapid Refresh (HRRR)

Assimilation and Modeling Branch (AMB) Projects GSD Home ESRL Home

HRRR Convective Probability Forecast

Products are currently under development and should be used for research purposes only.
Go to: HRRR Convective Probability Forecast Verification

Go to: HRRR Convective Probability Forecast Change Log

Run Time:| 02 Sep 2009 - 04Z T] Number Runs:| 5 5]
RunTime i C Di (NCWD) 02/04z 02/05z
Same Image For All Times
02/04z
loop
Binary VIP Levelfrom NCW vaiks 090272009 04 UTC
i ST L" —
5 ey N ;
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loop
Binary VIP Levelfrom NCW vaiks 090272009 04 UTC
v
[ "k
i ; ~ 312 :
- — —
Done

Current verification HCPF lead times



OUTLINE / SUMMARY

Sources of forecast errors
— Initial condition — Observing system, DA
— Model / ensemble formation

How to assess forecast errors?

— Error statistics from single forecasts — Statistical approach

— Ensembles — Dynamical approach

— Statistically post-processed ensembles — Dynamical-statistical approach

Statistical post-processing of ensembles
— Bias correction, merging, downscaling, derivation of variables

Ensemble database
— Summary statistics — Phase-1

— Full ensemble data — Phase-2
— All queries about weather can be answered

Examples
— Ensemble over West Coast of US (SF)
— Display / decision tools
— Probabilistic thunderstorm forecasts
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MDL GMOS & NAEFS Downscaled Forecast
Mean Absolute Error w. rt RTMA Average For Sept 2007

Valery Dagostaro, Kathy G/lbert
Bo Cui, Yuejian Zhu A

24-h GMOS
Forecast

24-h NAEFS
Forecast

a I
For CONUS:

NAEFS(1.45) : GMOS(1.72)
19% impr. over GMOS P

el I
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GSS (ETS)
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ETS of 6-h QPF

Equitable threat score (ETS)
of 6-h QPF

9-km resolution

Dec 2009 - Apr 2010 (some
missing data)

Verification data: Stage IV

6-h QPF verified 4 times per
day (00, 06, 12, 18 UTC)
6-114 h lead times

Ensemble mean is much
better than individual
members.

GepO0 (control) is also better.

OAR/ESRL/GSD/Forecast Applications Branch
http://esrl.noaa.gov/gsd/fab
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Optimizing the HCPF algorithm

Instantaneous reflectivity suffers from phase errors
Collecting the hourly maximum increases coverage, providing an
excellent predictor

NN

- ; -...‘ S ¢ ";; '. P 3 s ‘» - . [ l‘ ‘::’:5 .- N “—» . X n{ : ‘:b‘-: 4! - ot ’ v
= Hourly max 1-km
1-km reflectivity reflectivity



Optimizing the HCPF algorithm

HRRR updraft velocity and reflectivity are strongly correlated,
but the updraft field can more easily distinguish between

Hourly max

1 Hourly max
updraft velocity F

1km reflectivity %5



Optimizing the HCPF algorithm

Early versions of the HCPF had inconsistent skill, with
large bias swings throughout the diurnal convective cycle

Analytic updraft threshold function, target bias = 2.5

e Perform bias correction via a A
diurnally varying updraft (w) é’g"" \ E(')l;:,r;acltive A
threshold 8 o0 |\ mEAmum o[

e Find threshold values at each fa |}
hour that achieve a fixed bias ~ zo=+ |\ | |

e Perform a Fourier synthesis to

A

. 0.600 +——rpf—— , ; , ,
generate a smooth, analytic / e 12 1 |20 o2
_ Valid time (UTC)
function for updraft Diurnal convective minimum
velocity

Convective initiation



HCPF probability verification

Verification period: August 2009, Comprising 540 ensemble forecasts

40% probability verified on a 4-km grid

CSl versus lead time CSl versus valid time (6-hour forecasts)
0.0600 11]11: ll]lllll llllll 1111411 Il Il l Il Il l Il 1 l 1 1 l L L l L Il Il
Y Y ————— 5 b B d N TNt Gn e Gk 05 G 0 G 06 G 55 G S0 e & Smembers |
— smembers | T e ——— 4 o
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| \“\ | ' \\
0.0540 . A !
0.060 - -
. 0.0510 1 5 |
O | @)
0.0480
B
I 0.040 - ™ -
0.0450 - "
0.0420 o
[ I IR B R R IR 0.020 o
1.0 20 30 40 50 60 7.0 80 0 4 8 12 16 20 24
Lead time (hours) Valid time (UTC)

Highest overall skill (and largest gap between one and multiple members) occurs
around 06 UTC when convection evolves upscale.
Double minima in skill: early morning hours, and midday convective initiation.



HCPF probability verification

40% probability verified on a 4-km grid

Bias versus lead time
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With more members, similar or slightly higher skill can be obtained, while
substantially reducing bias.



Summary

* HRRR can provide an estimate of the likelihood (probability), timing, and
location of convection through a time-lagged “ensemble-of-opportunity”

« HRRR convective probabilistic forecast (HCPF) shown to have comparable skill to
other convective forecasts including the RUC convective probabilistic forecast
(RCPF) and the Collaborative Convective Forecast Product (CCFP)

 Key challenge is under-forecasting moist convection (low bias/PoD) in weakly
forced regions of convection (summer season) in early afternoon

« Improvements to HCPF under-forecast problem can be made through a variety
of techniques including “time-smeared” forecasts, larger search radii, lower
detection thresholds and limiting the ensemble to the more recent members



Where to go from here

« Incorporate deterministic forecast from recent member(s) to convey convective
mode and complement probabilities to indicate likelihood

* Perform logistic regression to make probabilities statistically reliable while
preserving sharpness/resolution to the forecasts

 Apply time-lagged ensemble to short-fuse forecast probabilities of other events
such as high wind, hail, tornadoes, flash flooding, heavy ice/snow, fires

» Add additional ensemble members with different physics, initialized at same
time, to improve HCPF which leads to...

« HRRR ensemble a.k.a. HRRRE in co-development between ESRL and National
Centers for Environmental Prediction (NCEP) over the next 5 years



